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In this talk

Motivation to look for baryon-baryon correlations
Our Bubble Monte-Carlo Blast-VWave Model
Correlation results: mapping the parameter space

Implications for experiments



QCD Phase Diagram

Critical Point

Quark Gluon Plasma

Quarkyonic

Hadron Gas Color Superconductor

>
Normal Nuclear Matter Ug




Quarkyonic Phase

Baryon number order parameter for |st order transition - Hidaka, McLerran,Pisarski 2008

Mesonic

<nB>=0

e
crossing a transition with a jump in baryon number (very small to
finite) leads to baryon rich cluster formation



Quarkyonic Phase

Baryon number order parameter for |st order transition - Hidaka, McLerran,Pisarski 2008

explore
phenomenological

consequences
Mesonic

<nB>=O

e
crossing a transition with a jump in baryon number (very small to
finite) leads to baryon rich cluster formation

note: we explore observables different from baryon number fluctuations



Bubble Nucleation

| st order transition from quarkyonic to mesonic phase goes through nucleation

* Baryons trapped in quarkyonic bubbles during transition
* Flow can translate spatial correlations to momentum-space

Generic for Ist order transition between baryon rich and baryon poor phases

Similar to Gavin 2001, but we consider momentum space correlations
Also see Randrup, consequences of spinodal break-up



The Phenomenology:

Bubble Monte-Carlo Blast-VWave

® Generate Np total baryon number in an event

AN/dNp ~ exp{—(Ng — Np)?/2Np}

® (Generate ng number of baryons per bubble

(1;\’?/(1‘723 N C',l‘]){—(‘IIB = '1—23)2/27—23}
® Distribute bubbles in coordinate space

longitudinal: flat distribution
transverse: center & surface density profile

® Distribute baryons inside bubbles

dN /dxdydz ~ 1/(1 + exp{—(rpupbie — R)/a})

Tbubble — 0.0 flll(”B)l/ . = ”bubble/ S



Spatial Correlations

Study how spatial correlations manifest in momentum space

Use discrete set of MC baryons
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Correlation Studies

Look at baryon-baryon correlations vs relative angle (A and An)
based on the variable

Ap
\/ Pref

. p_pref

i \/ P ref

0 = pair density
P,., = product of single particle densities

Normalization assures independence of
total number of baryons per event Ng

We study dependence on average number of baryons per bubble ng

a range of radial flow B and bubble decay temperature T

& emission geometry ()

Our study neglects global fluctuations.We focus on the shape of the correlation function.



Varying no. Baryons per Bubble
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Temperature Dependence

.T =100 MeV Surface Source ({3)=0.75)
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Radial Flow Dependence
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Longitudinal Width

<”B> =38
T =106 MeV
B, =0.89

whioaoaNwhAOON®

T

Ty = 1fm —_— Tdecay -

decay o
Ay width narrows with Tdecay

Ad width depends on T & {B) :both
depend on Tdecay

Signatures of transition will be strong if
transition is near freeze-out

Tdecay - TO = 9fm

Pocket formula: o, =037+ 0477



Implications for Experiments

T [GeV]

— Chemical freeze-out cleymans etal. phys.Rev.c73

0.25— © Heavy ion freeze-out data

What does such a
0.2 correlation signal mean

for detecting a |st
order phase transition?
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Implications for Experiments
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Implications for Experiments

T [GeV]

0.25

0.2

0.15

0.1

0.05

0.2

— Chemical freeze-out cleymans etal. phys.Rev.c73

© Heavy ion freeze-out data

Close to freeze-out:
large flow, low T, large
Tdecay,l€SS rescattering

|

Strong correlation

04 06 08 1
u, [GeV]



Implications for Experiments

T [GeV]

—d Chemica| freeze-out cleymans etal. Phys.Rev.C73
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Implications for Experiments

T [GeV]
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Implications for Experiments

T [GeV]

E— ChemlCa| freeze_out Cleymans et.al, Phys.Rev.C73

0.25 O Heavy ion freeze-out data

if no correlations are
observed then the
transition line can be
excluded from a
region in the phase

diagram
0.1 &
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For more accurate exclusion zone: dynamic model needed to relate flow, T, us and time



Summary & Conclusion

A |st order phase transition will lead to spatial correlations between
baryons via bubble nucleation

Flow can translate those correlations to near-side baryon-baryon
momentum space correlations; a smoking gun for Ist order phase
transition

Characteristics of correlations have been estimated for different flow
strengths, temperatures and decay times

Lack of signal excludes the presence of a |st order phase transition

within some range: dynamic model needed for more accurate exclusion
region
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